分析振动检测技术在日常设备保养中的应用与实现(一)

  振动是指描述系统状态的参量(如位移、电压)在其基准值上下交替变化的过程。狭义的指机械振动,即力学系统中的振动。电磁振动习惯上称为振荡。力学系统能维持振动,必须具有弹性和惯性。由于弹性,系统偏离其平衡位置时,会产生回复力,促使系统返回原来位置;由于惯性,系统在返回平衡位置的过程中积累了动能,从而使系统越过平衡位置向另一侧运动。正是由于弹性和惯性的相互影响,才造成系统的振动。按系统运动自由度分,有单自由度系统振动(如钟摆的振动)和多自由度系统振动。有限多自由度系统与离散系统相对应,其振动由常微分方程描述;无限多自由度系统与连续系统(如杆、梁、板、壳等)相对应,其振动由偏微分方程描述。如前一单元所言,一个完整的预知保养系统必须涵盖所有讯号分析检测技术,然而,不可讳言的,振动分析检测技术始终是预知保养系统之根本。

  以弹簧悬吊一个重量为m的物体为例,当物体被拉下再释放后,此种模式的振动亦称简谐振动。振动讯号图任何振动讯号都是由不同的振幅、频率及相位三大要素所组成,从事振动分析的前提为:三大要素对机械设备而言,都代表着不同的意义。

  振幅大小代表设备运转异常状况之严重性

  频率分布代表设备损坏或振动来源之所在

  相位差异代表设备运转所产生之振动模式

  时间波形(Time Waveform)时间波形是以振幅对时间为坐标的方式来表现振动讯号,这是判断轴承及齿轮等是否损坏很宝贵的讯息。

  频频谱就是频率的分布曲线,复杂振荡分解为振幅不同和频率不同的谐振荡,这些谐振荡的幅值按频率排列的图形叫做频谱。广泛应用在声学、光学和无线电技术等方面。 频谱是频率谱密度的简称。它将对信号的研究从时域引到频域,从而带来更直观的认识。

  频谱是以振幅对频率为坐标的方式来表现振动讯号,振动讯号经过FFT转换之后,从设备上所量测到的各种不同频率已被区隔开来,即可大略判断设备的问题根源及其严重程度。

  振动讯号量测技巧简述  以下三点都与所搜集的量测讯号息息相关,三者之任何一项未审慎考量运用时,都会使分析结果准确度降低,甚至量测所得资料毫无意义。1.量测工具之选用:

  单(双或多)频分析仪、传感器(Sensor)、探头(探棒或磁性座)、相位读取计等。加速度传感器(加速规)性能

  .可用频率范围较广

  .质轻、尺寸小

  .可耐高温

  .可靠性、稳定性佳

  .输出为低位准,高阻抗信号,需接信号放大器

  .敏感于安装方式及安装扭力等?振动传感器的灵敏度具有方向性,其中最灵敏的位置在传感器的中心线上。

  使用磁性座或探棒均必须固定锁紧。

  不管是否使用磁性座、探棒或直接量测,均必须将传感器垂直紧紧附着于被测面上量测。

  每个轴承都必须量测其垂直、水平及轴向。

  2.量测参数之设定:

  频率范围、分辨率、取样、平均化模式、积分方式等。3.量测位置之决定:

  是否靠近轴承位置、垂直(水平、轴向)量测是否正确、探头及连接现是否摇晃等。

  一般转动机械振动分析诊断使用振动分析技术诊断机械问题时,必须尽可能搜集掌握所有可以得到的信息,其中包括:

  1.机械设备设计资料:工作转速、临界转速、轴承型号、设备型式、联轴器型式、叶轮叶片数、齿轮齿数、皮带轮直径、皮带轮中心距、电源频率、管路设计等。

  2.现场感官检视记录:基础、基座、固定螺丝、管路、轴承润滑、轴承温度、异音噪音、异常传动等状况。

  3.损坏维修历史记录:各种保养周期、损坏原因、损坏情形、更换零组件、各种校正记录等。

  4.其它检测分析记录:温度趋势、振动值趋势、表压、电压、电流等。5.各种振动分析讯号:频谱、时间波形、相位分析、共振分析、模态分析等。所有分析讯号需考量仪器功能、设备特性、振动讯号本身,方能有效掌控设备真正问题及其严重性,切忌以套用简易频谱分析诊断法则,而给予设备错误诊断,切记一个错误的诊断除会增加保养成本外,亦会快速导致机械维修人员对振动分析技术丧失信心。从事振动分析诊断者,应本振动分析第一法则:

  知之为知之,不知为不知,是知也。当发现无法确认的问题时,适时请教振动分析专家,可避免错误诊断,亦可提升自己的诊断技术。

  1.平衡不良状况诊断

  当转动件惯性轴心线与转动轴心线不在同一直线上时,此转动件即为平衡不良

  造成转动件不平衡的原因

  –转动件本身形状不对称

  –加工制造上的公差

  –组装安装不当

  –转动件于运转时变形

  –转动件破损磨耗

  –转动件附着异物 平衡不良频谱特性?振动频谱主要发生于一倍转速

  振动方向通常都发生于径向

  轴向振幅很小,远小于径向之1/3

  不论在径向或轴向, 2倍、3倍、4倍频之振动,几乎没有